Nanomechanics of functional and pathological amyloid materials.
نویسندگان
چکیده
Amyloid or amyloid-like fibrils represent a general class of nanomaterials that can be formed from many different peptides and proteins. Although these structures have an important role in neurodegenerative disorders, amyloid materials have also been exploited for functional purposes by organisms ranging from bacteria to mammals. Here we review the functional and pathological roles of amyloid materials and discuss how they can be linked back to their nanoscale origins in the structure and nanomechanics of these materials. We focus on insights both from experiments and simulations, and discuss how comparisons between functional protein filaments and structures that are assembled abnormally can shed light on the fundamental material selection criteria that lead to evolutionary bias in multiscale material design in nature.
منابع مشابه
گزارش یک مورد آمیلوییدوز سیستمیک در حنجره
Introduction: Amyloidosis is an idiopathic disorder characterized by amyloid deposition leading to tissue damage and disease. Laryngeal amyloidosis is usually a localized phenomenon that is rarely accompanied by systemic involvement. Hoarseness is its most common symptom and the clinical findings in laryngoscopy are variable, nonspecific and difficult to be distinguished from other laryngea...
متن کاملVitamin E therapy prevents the accumulation of congophilic amyloid plaques and neurofibrillary tangles in the hippocampus in a rat model of Alzheimer’s disease
Objective(s): Vitamin E may have beneficial effects on oxidative stress and Aβ-associated reactive oxygen species production in Alzheimer’s disease. But, the exact role of vitamin E as a treatment for Alzheimer’s disease pathogenesis still needs to be studied. Hence, we examined the therapeutic effects of vitamin E on the density of congophilic amyloid plaques and neur...
متن کاملStudy of Cis–trans Isomerization Mechanism of [3-(3-Aminomethyl) Phenylazo] Phenyl Acetic Acid as a Causative Role in Alzheimer Using Density Functional Theory
Amyloid-β (Aβ) self-assembly into cross-β amyloidfibrils is implicated in a causative role in Alzheimer’s disease pathology.Uncertainties persist regarding the mechanisms of amyloid self assembly and the role of metastable prefibrillar aggregates. Aβ fibrilsfeature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the se...
متن کاملEnzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry
Amyloid fibrils represent a generic class of protein structure associated with both pathological states and with naturally occurring functional materials. This class of protein nanostructure has recently also emerged as an excellent foundation for sophisticated functional biocompatible materials including scaffolds and carriers for biologically active molecules. Protein-based materials offer th...
متن کاملMapping the Broad Structural and Mechanical Properties of Amyloid Fibrils.
Amyloids are fibrillar nanostructures of proteins that are assembled in several physiological processes in human cells (e.g., hormone storage) but also during the course of infectious (prion) and noninfectious (nonprion) diseases such as Creutzfeldt-Jakob and Alzheimer's diseases, respectively. How the amyloid state, a state accessible to all proteins and peptides, can be exploited for function...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature nanotechnology
دوره 6 8 شماره
صفحات -
تاریخ انتشار 2011